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Abstract

The genetic programming (GP) paradigm was designed
to evolve functions that are progressively better
approximations to some target function.  The
introduction of memory into GP has opened the
Pandora's box which is algorithms.  It has been shown
that the combination of GP and Indexed Memory can
be used to evolve any target algorithm.  What has not
been shown is the practicality of doing so.  This paper
addresses some of the fundamental issues in the
process of evolving algorithms and proposes a variety
of partial solutions, in general and for GP in particular.

I    INTRODUCTION

Traditional GP evolves functions, not algorithms.
Functions are mappings from inputs to outputs.  They
are reactive; their stimulus-response makes them the
amebas of the computational world.  Algorithms are
procedures that incorporate current input and past
inputs, into an iterative or recursive process that may
eventually produce an output.   Algorithms are the
humans (or dolphins) of the computational world.

It is possible to update the GP paradigm to evolve
algorithms.  But what effects does this have on the
efficacy of GP?  Whenever one tool is taken from one
task to be used for another, that tool brings biases
and limitations.  In the same way that back-
propagation does not provide the same properties of
convergence for recurrent neural networks that it does
for feed-forward neural networks, the GP paradigm is
not powerful enough to handle the complexities of
algorithms.

After introducing GP, Indexed Memory, and their
extension to general algorithms, this paper will outline
some of the fundamental problems with evolving
algorithms.  Then four proposals for improving the GP
paradigm to surmount these problems will be
discussed.  Techniques for implementing these
solutions in GP will be included.

These proposals, while grounded in the theories
of computation, are no substitute for experimentation.
Evolutionary computation has been and will continue
to be a field with a strong empirical basis.  Time after
time our intuitions have failed us about what will in fact
work well.  Only when serious experiments and
controls are done and reported will we begin to know
what is and what is not tractable.  I hope, however,
that these suggestions inspire fruitful investigations in
this area.

2    GENETIC PROGRAMMING

Genetic Programming is a strategy for evolving
functions that perform well on assigned tasks.[Koza
92]  These evolved functions are represented in GP as
Lisp-like expressions consisting of non-terminals
(atomic functions) and terminals (e.g. variables and
constants).  Simple GP functions might look like:

¥ (* 2 (IF (= 4 x) ELSE (x/(- 4 x))
THEN (cos (exp (+ x (* (+ 5 6) x))))))

¥ (exp (/ 9 x) (- (+ (+ 9 8) x) 12))

Given a sufficiently expressive set of mathematical
functions, variables, and constants, this type of
"language" can represent many desired functions,
such as x3*cos(2*x).  This function might evolve in
the following form:

¥ (* (* x (* x x)) (cos (* x 2)))

The process of finding a GP function that is a good or
perfect approximation to the target function can be
summarized as follows.  The population is initialized
with a set of randomly generated individuals. Each
member from the current pool of functions is tested to
determine its error on some task.  A new pool is
created in which the functions with lower error have
higher representation.  The new pool is then subjected
to various kinds of recombination.  Two popular
varieties are mutation and crossover.  Over time the
most successful individuals in the population become
increasingly accurate approximations of the correct
solution to the task.



Some small percentage of the population is
chosen at random from the new population and some
non-terminal or terminal part of the function is
changed.  This is called "mutation".   If the first
function above had its third x changed to a 1, it would
be removed from the population and the following
function would be added.

(* 2 (IF-THEN-ELSE (= 4 x) (x/(- 4 1)) 
(cos (exp (+ x (* (+ 5 6) x))))))

In crossover, two functions are chosen at random
from the new population and they exchange randomly
selected parenthesized sub-expressions.   The first
two examples shown above might look like this after
undergoing crossover:

¥ (* 2 (IF-THEN-ELSE (= 4 x) (x/(- 4 x)) 
(- (+ (+ 9 8) x) 12))))

¥ (exp (/ 9 x) (cos (exp (+ x (* (+ 5 6) x))))

This language is not powerful enough to express
many algorithms.  For example, there is a simple
procedure for checking whether a string is of the form
0n1n, but there is no way to make such a procedure in
this kind of Lisp-like structure.  There is no mechanism
for arbitrary length strings to be shown to the function
(tricks like Godel numbering just shuffle the problem to
a different place) and no way for the function to iterate
an arbitrary number of times.

We could encode the 0n1n problem by giving the
GP function a series of tests.  The variable x could be
used to give the current character (x = {0,1,2}) where
2 means "end of string".  The fitness (average
success) of the function could be based on whether it
returned a positive or negative number when it
received the 2.  Here the GP environment might
interpret positive numbers as "in the form 0n1n" and
negative numbers as "not in the form 0n1n".   But since
each function has no access to the previous inputs
and the previous inputs (where x was equal to 0 or 1)
determine the correct response when the end of string
is reached, this problem is unsolvable for traditional
GP.  In general, solutions to these kind of problems
requires something extra:  memory.

3    INDEXED MEMORY

Indexed memory is a simple addition to the GP
paradigm.[Teller "Evolution" 94]   Read and Write are
added as new non-terminals in the language.  Each GP
function is given access to its own array of integers,
indexed over the integers.   The expression (Read 5)
returns an integer in just the same way that (* 5 17)
does.  In general, (Read X) returns the integer stored
in memory position X, where X is an integer.   And
(Write -19 101) returns the old value of memory
position 101 and has the side effect of changing the
value of memory position 101 to be -19.  A simple GP
function that utilized indexed memory might be:

(IF (< (Read 4) (Read (Read (+ x 4))))          
THEN (Sqrt (+ (* x 8) 1))   ELSE (* x x))

Using indexed memory, a GP function could save past
inputs and use them in a process like the 0n1n

problem.  For each 0 or 1 that the function received, it
could store the value in a memory location.   Then,
when x = 2, it could decide whether to return a positive
or negative number based on the values stored in its
memory.  However, since the series of 0's and 1's can
be arbitrarily long and the GP function is of fixed size,
even if the memory size is infinite, there is a length of
strings above which the function cannot always
classify the input sets correctly.   So memory is
necessary, but there is another element missing from
traditional GP: iteration.

4    TURING COMPLETENESS OF GP+IM

GP plus indexed memory (GP+IM) has a key
ingredient that was missing from GP.  But, for the
reason just given, the procedure for checking 0n1n

can not be represented with any GP function, even if it
contains Read's and Write's.  But writing such an
algorithm in the following language is possible.

Repeat
   Evaluate < GP+IM function>
Until
   < Some particular state of the memory >

In fact, all algorithms can be expressed in this
language.[Teller "Turing" 94]   The formal description is
that this language is Turing complete.  For the
remainder of this paper, GP will be used to refer to
traditional GP and GP+IM will be used to abbreviate
this language of Repeat GP+IM Until StateX.   In
this language the GP+IM paradigm works as follows:
There is some task to perform.  Input is placed in the
memory array.  Then the GP+IM function is repeatedly
evaluated until its memory moves into a specific
state.(e.g. Memory[1] == 0)  When this happens the
memory is examined and one or more memory values
are extracted and interpreted as a response. (e.g.
Memory[25] < 0 means "unbalanced", Memory[25] >= 0
means "balanced")  This new paradigm is not evolving
functions.  It is evolving algorithms.

5    THE HALTING PROBLEM

The most obvious difficulty with evolving algorithms is
the property of algorithms that they may run on
forever.  It has been shown that, in general, it is not
always possible to tell if an algorithm will ever halt on a
particular input.  This property of algorithms is known
as the halting problem.[Hopcroft 79]

The halting problem presents a real stumbling
block for the effective evolution of algorithms.
Suppose that there are N algorithms in the population
and the GP+IM procedure is to test each algorithm on
some input and use the results to approximate its real
fitness.  Its real fitness is its average performance on
all possible inputs, but that is impractical or impossible
to calculate exactly since there are often a huge or
infinite number of possible inputs to an algorithm.  If
the procedure waits until all N algorithms have
returned an answer, there may never be a next



generation because some of the algorithms may never
return an answer.

So is all lost ?  That remains an open question, but
there are some possible solutions.  For example, a
better GP+IM procedure takes this same population of
N algorithms and the same task for the algorithms to
be tested on.  But this procedure runs the N fitness
tests in parallel and stops when the time since the
previous algorithm completed passes some threshold.
This termination criteria is very much like making
popcorn.  When there start to be fewer and fewer pops
per second you listen and when the frequency drops
below a threshold, you stop the process and give up
on the still unpopped kernels.  In the case of the
population however, you don't want to assign zero
fitness to those algorithms that had not completed yet
when the fitness test was terminated.  A more graceful
assignment of blame for these non-responses is to
keep a running average over multiple tests or even
generations for each individual and to give that
individual 0 fitness for that test, but to calculate its
fitness for reproduction based on all the tests it has
performed since it was created.  This way algorithms
that run on forever for a few particular cases may still
thrive in a population because their average success
at a task is still above average. T h e  c r u c i a l
parameter in this popcorn method is the threshold
after which the remaining algorithms are abandoned.
This is exactly the stopping rule or the "secretaries
problem" in the field of operations research.  Given
functions which describe the costs and values of
executing for another unit of time, optimal thresholds
can be determined.[Silverman 89]

There is another possible solution to the halting
problem in the evolution of algorithms.  GP+IM has
access to all of memory at every transition (evaluation
of the GP+IM function) and can, in general, change
many memory elements on every transition.  Instead
of waiting for each algorithm in a population to finish,
the process of testing the algorithms can work by
demanding an immediate response after the
algorithms have had some time to run.  This technique
in fields like planning is called Anytime algorithms.
Suppose for each individual in the population the input
is placed in memory and the individual is given a short
amount of time to run.  After this short period of time
the values of certain memory positions are extracted
and interpreted as the answer.  Instead of evolving
algorithms that eventually or even quickly halt, there
is now no issue of halting.  We have traded the halting
problem for the question "Is it practical to evolve
algorithms which keep their  'best guess' on the right
answer up-to-date with the computation they are doing
?"  There have been no rigorous test of this particular
technique, but initial results, described in the
applications section of this paper, show that this
strategy may be viable.

These proposals suppose certain features of the
space of algorithms that are not necessarily true.  One
proposal assumes that fitness proportionate
reproduction clears out most of the algorithms that
always run on forever and both assume they can use
successful algorithms to breed other algorithms that
have higher than random fitness.  It will be shown

below that these are not safe assumptions.  The
Popcorn method and the Anytime procedure are both
useful additions to the GP+IM paradigm, but there are
more hurdles to be cleared.

6    THE SPACE OF ALGORITHMS

To understand better why the problem is not so easily
solved, we need to understand the topological natures
of the space of functions and the space of algorithms.
The space of functions is the set of all finite non-
recursively defined mappings from inputs to outputs in
a particular domain.  The topology of the space of
functions is determined by the syntax in which these
mappings are written.  Two functions are close to each
other in the space of functions, not if they do similar
things, but if they are syntactically similar.  In the
space of functions it happens that, while not the
same, these two concepts are related.  For example,
x2*3x-1 is syntactically similar to x2*3x+1 and in
fact the graphs of y = x2*3x-1 and y = x2*3x+1
are quite close.  This fact is essential in the success
of GP.  GP implicitly relies heavily on the notion that if
a function is successful then other functions "near" it
in the space of functions will have a higher chance of
being successful than functions chosen at random
from the space.  The word "functionality" will be used
now to denote what a function or algorithm does, as
opposed to the syntax in which it is written.

The space of algorithms is not so well behaved.
This space is the set of all procedures that can
recognize recursively enumerable sets.  As before,
the topology of the space is determined by the syntax
with which these procedure are described.  As with
functions, two algorithms are close to each other, not
if they accept the same set of input, but if they are
syntactically similar.  Unlike functions however, there
is no real correspondence between syntactically
similar algorithms and the inputs they accept.  If a
large mathematical expression is taken and a single  +
changed to a -, the expression will often be very
similar.  As any programmer knows, a one character
change in a program usually causes complete chaos
and a totally different response to many or all inputs.
For example the two algorithm segments:

¥ While x<10 {y=y*y; x=x+1}

¥ While x<10 {y=y*y; x=x-1}

are very similar in their form, but very dissimilar in their
function.

This claim that changing algorithms is different
from changing functions needs further substantiation.
It is clear that x 2 + 9 x + 1  and - x 2 + 9 x + 1  are
syntactically similar and yet their graphs are close for
only a tiny fraction of their domain.  However, there is
a fundamental difference between the change in
functionality  a small syntactic perturbation causes to
a function and the change in functionality a small
syntactic perturbation causes to an algorithm.  This
difference is related to the notion of chaos.

The concept of chaos (non-linear dynamics) is
that tiny changes to a system cause large changes



over time.  When a function is changed in some small
way there is a corresponding change in its
functionality.  But the functional "distance" between
the two functions stops there.  When an expression in
an algorithm is changed in some small way, the effect
of that expression is changed as though it were a
function.  But on the next iteration of the algorithm, its
actions are based on its previous results.  The
changes in the previous results due to the small
change cause further changes to the current results
and these changes to the functionality of the algorithm
compound on each iteration.  Though the analogy is
not perfect, think of a random walk in a high
dimensional space that starts at the origin.  Making a
change to a function is like taking one random step.
Making a change to an algorithm is like taking an
unknown and potentially infinite number of random
steps.  The more steps taken, the farther the
expected distance the last step of the random walk is
from the origin.  The conclusion is that of the previous
paragraph.  The space of algorithms is extremely
discontinuous with respect to functionality and
therefore fitness surfaces over this space will be
extremely discontinuous.

GP works by searching syntactically nearby
functions and this works well because these functions
are often functionally similar too.  GP+IM, in its
present incarnation as a paradigm for evolving
algorithms, is probably not powerful enough to search
the space of algorithms effectively.  Fundamentally,
this is because the correspondence between
syntactic and functional similarity is so weak in
algorithms.  So the evolution of algorithms that solve
non-reactive problems demands new genetic
operators.  Mutation must give way to some new
operator that changes how the algorithm acts in some
special case, like an edge condition.  Crossover must
give way to a new genetic operator which can take
algorithms and recombine them in non random ways.
One useful operator would be to take two algorithms
and create children algorithms that accept the union,
intersection, union of the inverses, etc. of the sets of
inputs accepted by the parents.  These children are
related to their parents functionality and so hill
climbing might proceed.   Such "operators" have been
made for other syntactic representations of the
complete space of algorithms. [Hopcroft 1979]

7    CHANGING THE ALGORITHM SPACE

Because the space of algorithms is so discontinuous,
the mutation operator might almost as well erase the
old individual and make a new one from scratch.  A
better alternative is to use an algorithm-mutation
operator which takes into account how algorithms
work and what it is mutating.  For example, this new
operator would be careful to leave unchanged any
variables, constants or memory locations that are
tested in IF-THEN-ELSE's and then affected in the
GP+IM subtree of that IF-THEN-ELSE.  The algorithm-
mutation operator would have a more positive effect
by only changing constants by small percentages and
only changing non-terminals to closely related non-
terminals. (i.e. < <-->  <=  <-->   =  <-->  >=  <-->  > )

That is a specific technique in GP+IM for avoiding
some of the discontinuities of the space of algorithms.
In making new operators we leave the topology of the
space alone but redefine our evolution topology by
making the notion of "near" more constrained and
therefore more likely to have similar functional
properties.  But this does not change the fundamental
topology of the space.  Another technique to get
around the discontinuity of the space of algorithms is
to change the actual shape of the space by finding
some representation that is more continuous (and
therefore easier to hill-climb).  We can introduce a new
non-terminal that takes 3 arguments:  (EITHER X Y Z).
This function chooses a random number between the
MINVALUE and MAXVALUE.  If the number chosen is
less than X then Y is evaluated and returned.
Otherwise Z is evaluated and returned.  This
introduces a kind of fuzzy logic into GP+IM.  It should
be clear that this does not reduce the expressiveness
of GP+IM because (EITHER MAXVALUE Y Z) is the
same as just Y.  Nor does EITHER increase the
expressiveness because GP+IM  is already Turing
complete.

What we do get from EITHER is a smoothing out of
the topology of the space of GP+IM algorithms.  Now
when we change (EITHER 11 Y Z) to (EITHER 12 Y Z)
the entire algorithm will usually do what it did before.
This means that now two algorithms that are
syntactically similar are more likely to have similar
functionality, especially if they differ only in values in
the first position of EITHER non-terminals.  This again
make it easier to hill climb in the fitness space.

These attempts to find better operators or better
representations suffer from a basic flaw.  The very
nature of non-linear dynamics is that changes n o
matter how small, lead to unpredictable end
results.  Does that mean that we should abandon all
hope of hill- climbing in this space ?  No.  There is
nothing we can do to insure that all or even any of the
algorithms in a neighborhood will have high fitness.
But we can increase the likelihood that an algorithm
in a well chosen neighborhood will have high fitness.
For example, if we could find flawless operators, we
would have solved the halting problem, which is
unsolvable.  However, operators may exist that
produce algorithms that halt with higher frequency
then algorithms chosen at random from the space.
New representations, like the EITHER operator, still
allow changes to the system and so any
representation will be chaotic.  But empirical studies
may show that the EITHER operator has some positive
effect on hill-climbing in the algorithm space.

8    APPLICATION

I have begun work at CMU with Dr. Manuela Veloso on
a system for the synthesis of computer vision and
machine learning.  The ultimate goal is a general signal
to symbol vision translation system.   An expandable
set of objects are to be recognized in natural settings
(held by a person, sitting on a cluttered work bench,
etc.).

The basic inspiration for the work is the idea that
the signal to symbol problem can be thought of as a



large number of algorithms being applied in parallel to a
signal.   The signal in this case is a two dimensional
array of pixels.  Each algorithm casts a "vote" for the
likelihood that the symbol shown in the picture is the
symbol that this particular algorithm is specialized to
find.  Given a large number of such algorithms, one for
each symbol to be recognized, and an algorithm for
taking all these votes and returning some final
decision and confidence, a real breakthrough in
computer vision object recognition may be possible.
This new machine learning technique is called PADO:
Parallel Algorithm Discovery and Orchestration.

Each algorithm is similar to a genetically
programmed function with a fairly standard set of non-
terminals.  In addition, the non-terminal set includes a
few primitive functions that act on areas of a picture
(average pixel value, variance in pixel value, etc.).
And each algorithm has access to an array of memory
through the indexed memory non-terminals.  This
sounds like a function with memory, not an algorithm,
because there is no loop construct and no recursion.
So this "algorithm" is repeatedly applied until it signals
its completion by some particular state of its memory
(e.g. Memory[1]==1) . This repeated application of a
GP function with indexed memory is Turing complete.
[Teller "Turing" 94]

Each algorithm is run by repeated application of
the GP+IM function until it signals its completion
through some memory state or some maximum amount
of time has elapsed.   The "answer" the algorithm
returns is extracted from the memory (e.g. Answer =
Memory[17]+Memory[99]).  This is the Anytime
method mentioned in section 5.  It is in this way that
we avoid problems related to halting.  Though the
research is too young to have reliable results about
object recognition, this Anytime approach has already
shown promise.  These algorithms have already
demonstrated the ability to respond in this way to
simple tasks like the noting the passage of time or the
average intensity of a picture.

The second kind of problem mentioned in this
paper is the discontinuity of the space of algorithms.
One of the proposed solutions to this problem was to
find better operators.  In this context a better operator
is one that has a high chance of producing as output
algorithms with equal or higher fitness then those
algorithms the operator took as input.  Though we
have not perfected the process yet, we are working on
a method for evolving the operators themselves.  In
the end we hope, not only to find useful operators, but
by examining these operators to learn something
about the topology of the algorithm space, at least for
this domain.

9    CONCLUSIONS

GP was designed to work on functions.  The
introduction of memory and the possibility to iterate or
recurse has expanded the problems that the new
GP+IM system can solve.  But now we are faced with
the reality that hill climbing in the space of algorithms
is a much harder task, and one that GP was not
designed for.  The halting problem and the highly
discontinuous nature of functionality in the space of

algorithms were presented as two main stumbling
blocks to the successful evolution of algorithms.

There are recourses.  GP was not designed to
tackle these problems but it can be expanded to deal
well with these added complexities.  Four
improvements were suggested in this paper about how
to improve GP+IM to handle this problems.  The
Popcorn method and the Anytime procedure were
suggested as ways to avoid issues related to halting.
It was discussed that "nearby" algorithms were not
likely to be functionally similar and this violated an
important implicit assumption of the traditional GP
paradigm.  The first proposed technique for solving
this problem was to change the genetic operators
used to find new algorithms so that new algorithms had
a better than random change of being successful.  An
example was constraining mutation to change
terminals and non-terminals only to closely related
values or functions.  The second proposal was to
change the actual topology of the space so that more
"nearby" algorithms had similar functionality.  This was
done by the introduction of the EITHER operator.  This
creates a type of fuzzy logic in the GP+IM system
which has the effect of smoothing out the topology of
the space of algorithm which, in turn, makes hill-
climbing more effective.

As was mentioned in the introduction, this paper
is filled with suggestions, not answers.  Only good
science on real problems is likely to produce even
reliable rules of thumb.  I feel safe in predicting,
however, that the surprises that await us in the
evolution of algorithms dwarf by comparison all
surprises that the evolution of functions has provided
so far.
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