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Abstract. An important reason for the continued popularity of Artificial Neural
Networks (ANNs) in the machine learning community is that the gradient-descent
backpropagation procedure gives ANNs a locally optimal change procedure and,
in addition, a framework for understanding the ANN learning performance. Ge-
netic programming (GP) is also a successful evolutionary learning technique that
provides powerful parameterized primitive constructs. Unlike ANNs, though, GP
does not have such a principled procedure for changing parts of the learned system
based on its current performance. This paper introduces Neural Programming,
a connectionist representation for evolving programs that maintains the benefits
of GP. The connectionist model of Neural Programming allows for a regression
credit-blame procedure in an evolutionary learning system. We describe a general
method for an informed feedback mechanism for Neural Programming, Internal
Reinforcement. We introduce an Internal Reinforcement procedure and demon-
strate its use through an illustrative experiment.

1 Introduction

This paper introduces a new representation for learning complex programs. This new
representation, Neural Programming (NP) has been developed with the goal of incorpo-
rating positive aspects of both artificial neural networks and genetic programming. Neural
Programming is a connectionist programming language that has been designed to make
internal reinforcement, hither-to unaccomplished in genetic programming, possible.

Both GP [6] and ANNs [9] continue to be well investigated fields. In ANNs, the focus
on improving the power of the technique has not been on changing what is inside an
“artificial neuron.” Works like [4, 10] have, however, investigated the possible additional
benefit of complicating and un-homogenizing artificial neurons. To the best of our
knowledge, in the context of ANNs and principled update policies like backpropagation,
these investigations have not yet extended to arbitrary, potentially non-differentiable
functions like those typicallyused by human programmers and by evolving GP programs.

In GP, the focus of investigation for increased power of the technique has not been on
changing the GP representation or on finding principled (non-random) update policies.
Some work, has, however, been done in these areas. [8] describes a process for trying
to find sub-functions in an evolving GP function that are more likely than randomly
selected ones to contribute positively to fitness when crossed-over into other programs.
[3] and [5] describe possible approaches for allowing the mechanism of evolution to
�
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provide self-adaptation all the way down to the single node level. For example, in a
finite state machine or a GP program, each node can express an evolved preference for
interaction with the update strategies like mutation and crossover.

In brief, ANN is a successful representative of the machine learning practice of ex-
plicit credit-assignment. GP is a successful representative of empirical credit-assignment [2].
Empirical credit-assignment is the machine learning practice of allowing the dynamics
of the system to implicitly determine credit and blame. Evolution does just this [1].
The goal of this work is to begin to bridge this credit-assignment gap by finding ways
in which explicit and empirical credit-assignment can find mutual benefit in a single
machine learning technique.

In general, it is not possible to give an ANN an input for every possible parameteriza-
tion of each user defined primitive function a GP program can be given. And it is far from
obvious how to work complex functions into the middle of an otherwise homogeneous
network of simple non-linear functions. Yet, gradient-descent learning procedures, like
backpropagation in ANNs, are an extremely powerful idea. Backpropagation is not only
a kind of performance guarantee, it is a kind of performance explanation. It is to achieve
this kind of dual benefit that the research this paper reports was undertaken.

We show in this paper how we can accumulate explicit credit-assignment information
in Neural Programming. These values will be collectively referred to as the Credit-
Blame Map. A representation that would facilitate a credit-blame map would accomplish
two things. First, by looking over a program’s credit-blame map, humans could, with
considerably less work, sort out what a particular successful program was doing and
thereby increase the interpretability of GP programs. Second, by organizing the GP
programs in a network of nodes but by replacing program flow of control with flow of
data, we can use the credit-blame map to propagate punishment and reward through
the program, getting the benefits from both the GP and ANN worlds. In short, it would
be desirable to be able, in GP, to have reinforcement of the programs be more specific
(directed towards particular parts or aspects of a program) and more appropriate (telling
the system how to change those specific parts). ANNs, on the other hand, might benefit
greatly from the use of the kind of program primitives that are natural to GP and often
found to be advantageous to the learning process.

This paper will do three things. First, we will contribute the Neural Programming
representation as a new, connectionist, representation in which to evolve programs.
Second, this paper will describe how this representation can be used to deliver explicit,
useful, internal reinforcement to the evolving programs. And third, an experiment on a
illustrative signal classification problem will be used to demonstrate the promise of both
the representation and its associated internal reinforcement strategy.

2 Neural Programming

The essence of a programming language is one or more basic constructs and one or more
legal ways of combining those constructs. A measure of the extendibility of a language is
the ease with which new constructs or new construct combinations can be incorporated
into the language. It is the high degree of extendibility in GP that we want to wed to the
focused update policies possible in ANNs.



The Neural Programming representation has flow of data, like an ANN, rather than
the flow of control typical in programs. The nodes in a neural program can be arbitrary
functions of the inputs. So a node can still be an average of the inputs to the node and
a sigmoid threshold. But it can also other functions such as ADD, READ, WRITE,
IF-THEN-ELSE, and, most importantly, potentially complex user defined functions for
examining the input data (see figure 1). Such input-access-primitives might, for example,
return the AVERAGE or VARIANCE of values in a range of the input data as specified
by the inputs to that node. This kind of embedding of complex (often co-evolved)
components as primitives in the evolving GP system has repeated shown to be effective
(e.g., [7]) and is an important reason for trying to find a compromise between GP
and ANNs. Furthermore, these powerful input-access-primitives, as part of the learning
process, can be used in place of brittle preprocessing.
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Fig. 1.: A simple program in the NP representation

The multiple forked distribution of good values from any point in the program is
probably a valuable aspect of the NP representation. In the parley of GP, this can be seen
as a kind of highly flexible automatically defined function (ADF) [7] mechanism. This
fan-out is a connectionist advantage that GP programs might profit by incorporating.

Neural Programming was designed to be a representation for evolving programs. As
such, there are two dominate forms of change that evolving programs typically undergo:
crossover and mutation. Mutation is the change of one (usually atomic) part of the
program to another aspect of the same type. Crossover is the sexual reproduction of two
programs; two programs “mate” by exchanging program material between them.

While NP programs look more like recurrent ANNs than GP programs, NP
programs are changed, not by adjusting arc weights (NP arcs have no weights),
but by changing what is inside each node, the program topology and size.

Here are the major characteristics of the Neural Programming representation:� A Neural Program consists of nodes and arcs.� Each node
�

has
���

input and
���

output arcs.� Each node may be one of a set of functions (e.g., Read, Write2, Multiply, Input-
Access-Primitive-3, etc.) or zero-arity functions (e.g. constants, clock, etc.).� On each time step � (0 	
��	���������������������! ), every node takes some or all of
its inputs, computes its node function of those inputs, and then outputs the value to
all of its output arcs. This is a network flow style program!

2 These memory functions manipulate an indexed, randomly addressable memory [11].



� One of the possible node functions is “OUTPUT.” OUTPUT nodes are responsible
for contributing, through a function " 1 of the inputs and the time, to the program’s
response collected in OutputTotal.� There can be multiple “OUTPUT” nodes in one program (as determined by evolu-
tion). They all contribute to the same program variable, OutputTotal.� When the program finishes (�$#%���������������������! ) the program’s response is set to
a function of the OutputTotal variable.3

3 Internal Reinforcement in Neural Programming

Now that we have this neural programming representation, we introduce a mechanism
to accomplish internal reinforcement. In the Internal Reinforcement of Neural Programs
(IRNP), there are two main stages. The first stage is to classify each node and arc of
a program with its perceived contribution to the program’s output. This set of labels
will be collectively referred to as the Credit-Blame map. The second stage is to use this
Credit-Blame map to change the program in a way that is more likely than random to
improve its performance.

It is still an open question in our research which methods to use to best accomplish
the goals of internal reinforcement. We have already identified several methods for
accomplishing each of the two stages. For the sake of brevity and clarity, this paper will
focus on only one technique for each of the two stages.

The evolved NP programs that we consider now are part of the PADO system
(described in [12, 13, 14]). For the purpose of this paper, it is sufficient to know that
PADO is a machine learning system designed for signal classification. In PADO, an
evolving program need only learn to discriminate one signal from the others in order to
survive and be useful to the PADO system. The experiments we report to illustrate NP
and IRNP are run in PADO.

3.1 Creating a Credit-Blame map

Most machine learning problems can either be described as target value prediction or
classification problems. There are a number of ways in which classification problems
can be reduced to target value prediction problems. In PADO this is done by evolving
“discriminator” programs for each of the classes and then orchestrating their responses.
This means that for each program in PADO, the value it should return is ordinal (i.e. if &
is the right value to return, then a program that says &�' 1 is better than a program that
says &�' 2). Having collapsed these two parts of machine learning into one view, let us
consider an abstract input to output mapping to be learned by the neural programs.

Accumulate Explicit Credit-Assignment Values For each node ( , over all time steps
on a particular training example � , we will accumulate some function4 of the values node
( outputs into a value )

�* . We will call the correct answer (the correct target value) for
training instance � , �

�
.

3 NP programs can also return answers through memory, rather than through OUTPUT nodes.
4 For this paper, this will be the mean of the values but other functions are being investigated.



Now we have two continuous variables in � : �
�

and )
�* . We can compute the

correlation between them. We will call this the credit score for node ( , notated as CS * .
With CS * , we already have a simple Credit-Blame map: a value associated with

each node in the program that helps indicate its contribution to the program. A neural
program such that every node ( has a value of zero for CS * is, by definition, a useless
program. The reader should, however, be concerned with a situation in which nodes (
and + produce values and node , computes an XOR of these two values. In this case,
even if , has a high credit score, ( and + will not. And yet it is clear that nodes ( and +
are largely responsible for node , ’s success. We can continue to refine the Credit-Blame
map to attend to this type of indebtedness relationships.

Refine Credit-Assignment Values by Bucket-Brigade We can now use the topology
of the NP program, in a bucket-brigade style backward propagation, to refine the credit
scores at each node. There is a wealth of literature on propagation of values through
networks. Our current research includes an investigation into an understanding the effects
of these various methods so that we can incorporate the most effective paradigm into the
IRNP mechanism.

For the experiment described in this paper we will use the simplest mechanism
possible: each node ( will be given the maximum of the credit scores of nodes such that
one of the outputs of ( is an input to that node and that node was effected by the values
output by ( . If this were a highly connected graph and the arity of all nodes was equal
to the number of their inputs, then this bucket-brigade operation would simply fill the
entire Credit-Blame map with the maximum value in the map. In practice, this does not
happen exactly because the neural programs have many arcs whose values are ignored
(even though very few of the node values are ignored). For example, a node + with a
function value of the constant value “6” outputs its value at each time step and ignores all
values it receives as input. So even if this constant is relevant to a node with a high credit
score (and so node + , in turn, receives a high credit score) the nodes whose outputs are
inputs to + will receive no boost in credit score from this source.

In general, the arcs in an NP program are given credit scores that differ from either
their source or destination nodes (though this new value is a function of the two node
credit scores). For this paper, we will simply assign each arc from node ( to node + the
credit-score pair (CS * ,CS - ).

3.2 Using a Credit-Blame map

The second phase of the internal reinforcement is the use of the created Credit-Blame
map to enhance the probability that the program updates will lead either to a better
solution or to a similar solution in less time. There are two basic ways that the Credit-
Blame map can be used to do this enhancement: through improvement of either the
mutation or crossover strategies.

The possibility of using internal reinforcement (explicit credit assignment) not only
for mutation (which has analogies to the world of ANNs) but for crossover as well is
important. Traditional GP uses random crossover and relies entirely on the mechanism of
empirical credit assignment. Work has been done to boot-strap this mechanism by using
the evolutionary process itself to evolve improved crossover procedures (e.g. [3, 12]).



Thus, NP has the potential not only to improve on the existing GP mechanism, but also
to help explain the central mystery of GP, crossover.

Mutation can take a variety of forms in NP. These various mutations can be best
divided as: add an arc, delete an arc, swap two arcs, change a node function, add a
node to the program, delete a node from the program. In the simple experiment shown
in the next section each of these mutations took place with equal likelihood in both
the random and internal reinforcement recombination cases. For example, to add an arc
under random mutation to an NP program we simply pick a source and destination node
at random from the program to be mutated and add the arc between the nodes.

Internal reinforcement can have a positive effect on this recombination procedure.
For each recombination type, we pick a few nodes (eight in this paper’s experiment) at
random and pick a node or arc (depending on the mutation type) that has maximal or
minimal credit score as appropriate. For example, when deleting a program node, we
can pick a few nodes at random and delete the node with the lowest credit score.

In the random version of crossover, we simply pick a “cut” from each graph (i.e.,
a subset of the program nodes) at random and exchange and reconnect them. Like the
mutation, we will keep the same underlying mechanism (for this paper) and simply try
to get “good” program fragments to change. Given that we will separate a program into
two fragments before crossover, let us define CutCost to be the sum of all credit scores of
inter-fragment arcs and InternalCost to be the sum of all credit scores of intra-fragment
arcs in the program to be crossed-over. For these definitions we will take the credit score
of an arc to be the credit score of its destination node. Now we will say that the cost of
a particular fragmentation of a program is equal to CutCost/(InternalCost + CutCost).
If we try to minimize this value for both of the program fragments we choose, we are
much less likely to disrupt a crucial part of the program during crossover.

In addition to these “aids to random search”, we introduce specific changes to a
program that can be affected with the use of the Credit-Blame map. For example, the
IRNP procedure may promote high sensitivity parts of programs, but may not necessarily
connect these parts to the output nodes. We can refine a program in the following way.
First, let ( be the node with highest CS * . Second, let . be the output arc of ( to a node
+ that minimizes CS - . Third, for all arcs � that have an OUTPUT node as a destination,
pick the arc & whose source node ( has minimal CS * . Finally, switch arcs . and & .

4 Experimental Results

This section describes an experiment using the IRNP paradigm. In order to focus on the
issues at hand, a set of simple manufactured inputs is used. Figure 2 shows an example
input from each of the three classes in this classification problem.

The node functions used were / constants (0..256), clock, +, -, *, READ, WRITE,
POINT, AVERAGE 0 . POINT is an input access primitive that uses one input arc as a
parameter � 1 and returns Input[� 1]. AVERAGE is an input access primitive that uses two
input arcs as parameters (� 1,� 2) and returns the mean of values in / Input[� 1]..Input[� 2] 0 .

Figure 3 shows the classification performance of the best evolved programs. This ex-
periment was run on a small population (210 individuals). Each individual was “pulsed”
20 times before a response was retrieved through the OUTPUT nodes. The training took
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Fig. 2.: Signal examples: All training and testing examples are random vectors of length 256 with
class centerlines at 171, 128, and 85 and a point independent standard deviation of 12.

place with 210 randomly generated instances and the separate testing set was made up of
900 randomly generated instances. This particular experiment used a mutation percent-
age rate of 70% and a crossover percentage rate of 25%. It is worth noting that internal
reinforcement only adds about 6% to the computational expense of a generation.
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Fig. 3.: This graph compares the classification performance of Neural Programming with and
without Internal Reinforcement on the signal classes outlined above on an out-of-training test set.

The point of this section is to demonstrate that internal reinforcement can have a
significant positive effect on the evolution of algorithms. The experiment shown in fig-
ure 3 displays this effect; the curve plots the generalization classification ability of the
best NP programs on that generation, averaged over 100 runs on a test set of previous
unseen, randomly generated inputs. To focus on the immediate benefit of internal re-
inforcement, the graph above shows only the first 25 generations of computation. This
is a simple problem and both curves reach 100% before generation 50. Over these first
25 generations, the Neural Programming population using IRNP learns better than the
NP population with standard recombination. On average, at each generation, the IRNP
programs generalize to unseen examples better than the NP population using random
mutation at the same generation. More significantly, for all levels of generalization per-
formance that both populations tend to reach, the NP populations evolved under IRNP
reach that level, on average, in about 30% of the generations.



5 Conclusions
This paper has presented a new representation for learning complex programs. This new
representation, Neural Programming has been developed with the goal of incorporating
positive aspects of both artificial neural networks and genetic programming. Neural
Programming is a connectionist programming language which has been designed to make
internal reinforcement, hither-to unaccomplished in genetic programming, possible. A
simple way of accomplishing this sort of internal reinforcement was detailed and some
alternatives and extensions were briefly mentioned. We illustrated the technique with
a focused experiment that showed that internal reinforcement improves the speed and
accuracy of Neural Programming learning.

Neural Programming and associated internal reinforcement policies are our on-going
research. The goal of this paper has been to communicate the exciting possibility that,
through the exploration of new program representations, we may be able to find ways
to capture the explanation and update power of backpropagation with the flexibility and
generality of genetic programming.
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